arrange()
orders the rows of a data frame by the values of selected
columns.
Unlike other dplyr verbs, arrange()
largely ignores grouping; you
need to explicitly mention grouping variables (or use .by_group = TRUE
)
in order to group by them, and functions of variables are evaluated
once per data frame, not once per group.
An object of the same type as .data
. The output has the following
properties:
All rows appear in the output, but (usually) in a different place.
Columns are not modified.
Groups are not modified.
Data frame attributes are preserved.
Unlike base sorting with sort()
, NA
are:
always sorted to the end for local data, even when wrapped with desc()
.
treated differently for remote data, depending on the backend.
This function is a generic, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
The following methods are currently available in loaded packages:
dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
example(read10xVisium)
#>
#> rd10xV> dir <- system.file(
#> rd10xV+ file.path("extdata", "10xVisium"),
#> rd10xV+ package = "SpatialExperiment")
#>
#> rd10xV> sample_ids <- c("section1", "section2")
#>
#> rd10xV> samples <- file.path(dir, sample_ids, "outs")
#>
#> rd10xV> list.files(samples[1])
#> [1] "raw_feature_bc_matrix" "spatial"
#>
#> rd10xV> list.files(file.path(samples[1], "spatial"))
#> [1] "scalefactors_json.json" "tissue_lowres_image.png"
#> [3] "tissue_positions_list.csv"
#>
#> rd10xV> file.path(samples[1], "raw_feature_bc_matrix")
#> [1] "/__w/_temp/Library/SpatialExperiment/extdata/10xVisium/section1/outs/raw_feature_bc_matrix"
#>
#> rd10xV> (spe <- read10xVisium(samples, sample_ids,
#> rd10xV+ type = "sparse", data = "raw",
#> rd10xV+ images = "lowres", load = FALSE))
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#> .cell in_tissue array_row array_col sample_id pxl_col_in_fullres
#> <chr> <lgl> <int> <int> <chr> <int>
#> 1 AAACAACGAATAGTTC-1 FALSE 0 16 section1 2312
#> 2 AAACAAGTATCTCCCA-1 TRUE 50 102 section1 8230
#> 3 AAACAATCTACTAGCA-1 TRUE 3 43 section1 4170
#> 4 AAACACCAATAACTGC-1 TRUE 59 19 section1 2519
#> 5 AAACAGAGCGACTCCT-1 TRUE 14 94 section1 7679
#> 6 AAACAGCTTTCAGAAG-1 FALSE 43 9 section1 1831
#> 7 AAACAGGGTCTATATT-1 FALSE 47 13 section1 2106
#> 8 AAACAGTGTTCCTGGG-1 FALSE 73 43 section1 4170
#> 9 AAACATGGTGAGAGGA-1 FALSE 62 0 section1 1212
#> 10 AAACATTTCCCGGATT-1 FALSE 61 97 section1 7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>
#>
#> rd10xV> # base directory 'outs/' from Space Ranger can also be omitted
#> rd10xV> samples2 <- file.path(dir, sample_ids)
#>
#> rd10xV> (spe2 <- read10xVisium(samples2, sample_ids,
#> rd10xV+ type = "sparse", data = "raw",
#> rd10xV+ images = "lowres", load = FALSE))
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#> .cell in_tissue array_row array_col sample_id pxl_col_in_fullres
#> <chr> <lgl> <int> <int> <chr> <int>
#> 1 AAACAACGAATAGTTC-1 FALSE 0 16 section1 2312
#> 2 AAACAAGTATCTCCCA-1 TRUE 50 102 section1 8230
#> 3 AAACAATCTACTAGCA-1 TRUE 3 43 section1 4170
#> 4 AAACACCAATAACTGC-1 TRUE 59 19 section1 2519
#> 5 AAACAGAGCGACTCCT-1 TRUE 14 94 section1 7679
#> 6 AAACAGCTTTCAGAAG-1 FALSE 43 9 section1 1831
#> 7 AAACAGGGTCTATATT-1 FALSE 47 13 section1 2106
#> 8 AAACAGTGTTCCTGGG-1 FALSE 73 43 section1 4170
#> 9 AAACATGGTGAGAGGA-1 FALSE 62 0 section1 1212
#> 10 AAACATTTCCCGGATT-1 FALSE 61 97 section1 7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>
#>
#> rd10xV> # tabulate number of spots mapped to tissue
#> rd10xV> cd <- colData(spe)
#>
#> rd10xV> table(
#> rd10xV+ in_tissue = cd$in_tissue,
#> rd10xV+ sample_id = cd$sample_id)
#> sample_id
#> in_tissue section1 section2
#> FALSE 28 27
#> TRUE 22 22
#>
#> rd10xV> # view available images
#> rd10xV> imgData(spe)
#> DataFrame with 2 rows and 4 columns
#> sample_id image_id data scaleFactor
#> <character> <character> <list> <numeric>
#> 1 section1 lowres #### 0.0510334
#> 2 section2 lowres #### 0.0510334
spe |>
arrange(array_row)
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#> .cell in_tissue array_row array_col sample_id pxl_col_in_fullres
#> <chr> <lgl> <int> <int> <chr> <int>
#> 1 AAACAACGAATAGTTC-1 FALSE 0 16 section1 2312
#> 2 AAAGACATGAAGTTTA-1 FALSE 0 92 section1 7541
#> 3 AAAGGTCAACGACATG-1 FALSE 0 112 section1 8917
#> 4 AAAGACATGAAGTTTA-1 FALSE 0 92 section1 7541
#> 5 AAAGGTCAACGACATG-1 FALSE 0 112 section1 8917
#> 6 AAACGGGTTGGTATCC-1 FALSE 1 23 section1 2794
#> 7 AAACGGGTTGGTATCC-1 FALSE 1 23 section1 2794
#> 8 AAACGACAGTCTTGCC-1 FALSE 2 118 section1 9330
#> 9 AAACGACAGTCTTGCC-1 FALSE 2 118 section1 9330
#> 10 AAACAATCTACTAGCA-1 TRUE 3 43 section1 4170
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>