The filter() function is used to subset a data frame, retaining all rows that satisfy your conditions. To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition evaluates to NA the row will be dropped, unlike base subsetting with [.

# S3 method for class 'SpatialExperiment'
filter(.data, ..., .preserve = FALSE)

Arguments

.data

A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.

...

<data-masking> Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

.preserve

Relevant when the .data input is grouped. If .preserve = FALSE (the default), the grouping structure is recalculated based on the resulting data, otherwise the grouping is kept as is.

Value

An object of the same type as .data. The output has the following properties:

  • Rows are a subset of the input, but appear in the same order.

  • Columns are not modified.

  • The number of groups may be reduced (if .preserve is not TRUE).

  • Data frame attributes are preserved.

Details

The filter() function is used to subset the rows of .data, applying the expressions in ... to the column values to determine which rows should be retained. It can be applied to both grouped and ungrouped data (see group_by() and ungroup()). However, dplyr is not yet smart enough to optimise the filtering operation on grouped datasets that do not need grouped calculations. For this reason, filtering is often considerably faster on ungrouped data.

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to filter the data:

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is involved. Compare this ungrouped filtering:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

In the ungrouped version, filter() compares the value of mass in each row to the global average (taken over the whole data set), keeping only the rows with mass greater than this global average. In contrast, the grouped version calculates the average mass separately for each gender group, and keeps rows with mass greater than the relevant within-gender average.

Methods

This function is a generic, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages: dplyr (data.frame, ts), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment), tidySpatialExperiment (SpatialExperiment) .

See also

Other single table verbs: arrange(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples

example(read10xVisium)
#> 
#> rd10xV> dir <- system.file(
#> rd10xV+   file.path("extdata", "10xVisium"), 
#> rd10xV+   package = "SpatialExperiment")
#> 
#> rd10xV> sample_ids <- c("section1", "section2")
#> 
#> rd10xV> samples <- file.path(dir, sample_ids, "outs")
#> 
#> rd10xV> list.files(samples[1])
#> [1] "raw_feature_bc_matrix" "spatial"              
#> 
#> rd10xV> list.files(file.path(samples[1], "spatial"))
#> [1] "scalefactors_json.json"    "tissue_lowres_image.png"  
#> [3] "tissue_positions_list.csv"
#> 
#> rd10xV> file.path(samples[1], "raw_feature_bc_matrix")
#> [1] "/__w/_temp/Library/SpatialExperiment/extdata/10xVisium/section1/outs/raw_feature_bc_matrix"
#> 
#> rd10xV> (spe <- read10xVisium(samples, sample_ids, 
#> rd10xV+   type = "sparse", data = "raw", 
#> rd10xV+   images = "lowres", load = FALSE))
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#>    .cell              in_tissue array_row array_col sample_id pxl_col_in_fullres
#>    <chr>              <lgl>         <int>     <int> <chr>                  <int>
#>  1 AAACAACGAATAGTTC-1 FALSE             0        16 section1                2312
#>  2 AAACAAGTATCTCCCA-1 TRUE             50       102 section1                8230
#>  3 AAACAATCTACTAGCA-1 TRUE              3        43 section1                4170
#>  4 AAACACCAATAACTGC-1 TRUE             59        19 section1                2519
#>  5 AAACAGAGCGACTCCT-1 TRUE             14        94 section1                7679
#>  6 AAACAGCTTTCAGAAG-1 FALSE            43         9 section1                1831
#>  7 AAACAGGGTCTATATT-1 FALSE            47        13 section1                2106
#>  8 AAACAGTGTTCCTGGG-1 FALSE            73        43 section1                4170
#>  9 AAACATGGTGAGAGGA-1 FALSE            62         0 section1                1212
#> 10 AAACATTTCCCGGATT-1 FALSE            61        97 section1                7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>
#> 
#> rd10xV> # base directory 'outs/' from Space Ranger can also be omitted
#> rd10xV> samples2 <- file.path(dir, sample_ids)
#> 
#> rd10xV> (spe2 <- read10xVisium(samples2, sample_ids, 
#> rd10xV+   type = "sparse", data = "raw", 
#> rd10xV+   images = "lowres", load = FALSE))
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#>    .cell              in_tissue array_row array_col sample_id pxl_col_in_fullres
#>    <chr>              <lgl>         <int>     <int> <chr>                  <int>
#>  1 AAACAACGAATAGTTC-1 FALSE             0        16 section1                2312
#>  2 AAACAAGTATCTCCCA-1 TRUE             50       102 section1                8230
#>  3 AAACAATCTACTAGCA-1 TRUE              3        43 section1                4170
#>  4 AAACACCAATAACTGC-1 TRUE             59        19 section1                2519
#>  5 AAACAGAGCGACTCCT-1 TRUE             14        94 section1                7679
#>  6 AAACAGCTTTCAGAAG-1 FALSE            43         9 section1                1831
#>  7 AAACAGGGTCTATATT-1 FALSE            47        13 section1                2106
#>  8 AAACAGTGTTCCTGGG-1 FALSE            73        43 section1                4170
#>  9 AAACATGGTGAGAGGA-1 FALSE            62         0 section1                1212
#> 10 AAACATTTCCCGGATT-1 FALSE            61        97 section1                7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>
#> 
#> rd10xV> # tabulate number of spots mapped to tissue
#> rd10xV> cd <- colData(spe)
#> 
#> rd10xV> table(
#> rd10xV+   in_tissue = cd$in_tissue, 
#> rd10xV+   sample_id = cd$sample_id)
#>          sample_id
#> in_tissue section1 section2
#>     FALSE       28       27
#>     TRUE        22       22
#> 
#> rd10xV> # view available images
#> rd10xV> imgData(spe)
#> DataFrame with 2 rows and 4 columns
#>     sample_id    image_id   data scaleFactor
#>   <character> <character> <list>   <numeric>
#> 1    section1      lowres   ####   0.0510334
#> 2    section2      lowres   ####   0.0510334
spe |>
    filter(in_tissue == TRUE)
#> # A SpatialExperiment-tibble abstraction: 44 × 7
#> # Features = 50 | Cells = 44 | Assays = counts
#>    .cell              in_tissue array_row array_col sample_id pxl_col_in_fullres
#>    <chr>              <lgl>         <int>     <int> <chr>                  <int>
#>  1 AAACAAGTATCTCCCA-1 TRUE             50       102 section1                8230
#>  2 AAACAATCTACTAGCA-1 TRUE              3        43 section1                4170
#>  3 AAACACCAATAACTGC-1 TRUE             59        19 section1                2519
#>  4 AAACAGAGCGACTCCT-1 TRUE             14        94 section1                7679
#>  5 AAACCGGGTAGGTACC-1 TRUE             42        28 section1                3138
#>  6 AAACCGTTCGTCCAGG-1 TRUE             52        42 section1                4101
#>  7 AAACCTCATGAAGTTG-1 TRUE             37        19 section1                2519
#>  8 AAACGAAGAACATACC-1 TRUE              6        64 section1                5615
#>  9 AAACGAGACGGTTGAT-1 TRUE             35        79 section1                6647
#> 10 AAACGGTTGCGAACTG-1 TRUE             67        59 section1                5271
#> # ℹ 34 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>