R/tidyr_methods.R
separate.Rd
separate()
has been superseded in favour of separate_wider_position()
and separate_wider_delim()
because the two functions make the two uses
more obvious, the API is more polished, and the handling of problems is
better. Superseded functions will not go away, but will only receive
critical bug fixes.
Given either a regular expression or a vector of character positions,
separate()
turns a single character column into multiple columns.
# S3 method for class 'SpatialExperiment'
separate(
data,
col,
into,
sep = "[^[:alnum:]]+",
remove = TRUE,
convert = FALSE,
extra = "warn",
fill = "warn",
...
)
A data frame.
<tidy-select
> Column to expand.
Names of new variables to create as character vector.
Use NA
to omit the variable in the output.
Separator between columns.
If character, sep
is interpreted as a regular expression. The default
value is a regular expression that matches any sequence of
non-alphanumeric values.
If numeric, sep
is interpreted as character positions to split at. Positive
values start at 1 at the far-left of the string; negative value start at -1 at
the far-right of the string. The length of sep
should be one less than
into
.
If TRUE
, remove input column from output data frame.
If TRUE
, will run type.convert()
with
as.is = TRUE
on new columns. This is useful if the component
columns are integer, numeric or logical.
NB: this will cause string "NA"
s to be converted to NA
s.
If sep
is a character vector, this controls what
happens when there are too many pieces. There are three valid options:
"warn"
(the default): emit a warning and drop extra values.
"drop"
: drop any extra values without a warning.
"merge"
: only splits at most length(into)
times
If sep
is a character vector, this controls what
happens when there are not enough pieces. There are three valid options:
"warn"
(the default): emit a warning and fill from the right
"right"
: fill with missing values on the right
"left"
: fill with missing values on the left
Additional arguments passed on to methods.
tidySpatialExperiment
example(read10xVisium)
#>
#> rd10xV> dir <- system.file(
#> rd10xV+ file.path("extdata", "10xVisium"),
#> rd10xV+ package = "SpatialExperiment")
#>
#> rd10xV> sample_ids <- c("section1", "section2")
#>
#> rd10xV> samples <- file.path(dir, sample_ids, "outs")
#>
#> rd10xV> list.files(samples[1])
#> [1] "raw_feature_bc_matrix" "spatial"
#>
#> rd10xV> list.files(file.path(samples[1], "spatial"))
#> [1] "scalefactors_json.json" "tissue_lowres_image.png"
#> [3] "tissue_positions_list.csv"
#>
#> rd10xV> file.path(samples[1], "raw_feature_bc_matrix")
#> [1] "/__w/_temp/Library/SpatialExperiment/extdata/10xVisium/section1/outs/raw_feature_bc_matrix"
#>
#> rd10xV> (spe <- read10xVisium(samples, sample_ids,
#> rd10xV+ type = "sparse", data = "raw",
#> rd10xV+ images = "lowres", load = FALSE))
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#> .cell in_tissue array_row array_col sample_id pxl_col_in_fullres
#> <chr> <lgl> <int> <int> <chr> <int>
#> 1 AAACAACGAATAGTTC-1 FALSE 0 16 section1 2312
#> 2 AAACAAGTATCTCCCA-1 TRUE 50 102 section1 8230
#> 3 AAACAATCTACTAGCA-1 TRUE 3 43 section1 4170
#> 4 AAACACCAATAACTGC-1 TRUE 59 19 section1 2519
#> 5 AAACAGAGCGACTCCT-1 TRUE 14 94 section1 7679
#> 6 AAACAGCTTTCAGAAG-1 FALSE 43 9 section1 1831
#> 7 AAACAGGGTCTATATT-1 FALSE 47 13 section1 2106
#> 8 AAACAGTGTTCCTGGG-1 FALSE 73 43 section1 4170
#> 9 AAACATGGTGAGAGGA-1 FALSE 62 0 section1 1212
#> 10 AAACATTTCCCGGATT-1 FALSE 61 97 section1 7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>
#>
#> rd10xV> # base directory 'outs/' from Space Ranger can also be omitted
#> rd10xV> samples2 <- file.path(dir, sample_ids)
#>
#> rd10xV> (spe2 <- read10xVisium(samples2, sample_ids,
#> rd10xV+ type = "sparse", data = "raw",
#> rd10xV+ images = "lowres", load = FALSE))
#> # A SpatialExperiment-tibble abstraction: 99 × 7
#> # Features = 50 | Cells = 99 | Assays = counts
#> .cell in_tissue array_row array_col sample_id pxl_col_in_fullres
#> <chr> <lgl> <int> <int> <chr> <int>
#> 1 AAACAACGAATAGTTC-1 FALSE 0 16 section1 2312
#> 2 AAACAAGTATCTCCCA-1 TRUE 50 102 section1 8230
#> 3 AAACAATCTACTAGCA-1 TRUE 3 43 section1 4170
#> 4 AAACACCAATAACTGC-1 TRUE 59 19 section1 2519
#> 5 AAACAGAGCGACTCCT-1 TRUE 14 94 section1 7679
#> 6 AAACAGCTTTCAGAAG-1 FALSE 43 9 section1 1831
#> 7 AAACAGGGTCTATATT-1 FALSE 47 13 section1 2106
#> 8 AAACAGTGTTCCTGGG-1 FALSE 73 43 section1 4170
#> 9 AAACATGGTGAGAGGA-1 FALSE 62 0 section1 1212
#> 10 AAACATTTCCCGGATT-1 FALSE 61 97 section1 7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>
#>
#> rd10xV> # tabulate number of spots mapped to tissue
#> rd10xV> cd <- colData(spe)
#>
#> rd10xV> table(
#> rd10xV+ in_tissue = cd$in_tissue,
#> rd10xV+ sample_id = cd$sample_id)
#> sample_id
#> in_tissue section1 section2
#> FALSE 28 27
#> TRUE 22 22
#>
#> rd10xV> # view available images
#> rd10xV> imgData(spe)
#> DataFrame with 2 rows and 4 columns
#> sample_id image_id data scaleFactor
#> <character> <character> <list> <numeric>
#> 1 section1 lowres #### 0.0510334
#> 2 section2 lowres #### 0.0510334
spe |>
separate(col = sample_id, into = c("A", "B"), sep = "[[:alnum:]]n")
#> # A SpatialExperiment-tibble abstraction: 99 × 9
#> # Features = 50 | Cells = 99 | Assays = counts
#> .cell in_tissue array_row array_col A B sample_id pxl_col_in_fullres
#> <chr> <lgl> <int> <int> <chr> <chr> <chr> <int>
#> 1 AAACA… FALSE 0 16 secti 1 section1 2312
#> 2 AAACA… TRUE 50 102 secti 1 section1 8230
#> 3 AAACA… TRUE 3 43 secti 1 section1 4170
#> 4 AAACA… TRUE 59 19 secti 1 section1 2519
#> 5 AAACA… TRUE 14 94 secti 1 section1 7679
#> 6 AAACA… FALSE 43 9 secti 1 section1 1831
#> 7 AAACA… FALSE 47 13 secti 1 section1 2106
#> 8 AAACA… FALSE 73 43 secti 1 section1 4170
#> 9 AAACA… FALSE 62 0 secti 1 section1 1212
#> 10 AAACA… FALSE 61 97 secti 1 section1 7886
#> # ℹ 89 more rows
#> # ℹ 1 more variable: pxl_row_in_fullres <int>